IITM Pravartak certified Artificial Intelligence & Machine Learning course
logo

IIT-M Pravartak certified

Artificial Intelligence & Machine Learning course

Zen Class career program offers the high-end course to Master Artificial Intelligence & Machine Learning with Certification accredited by IITM Pravartak. Gain job-ready AI & ML skills within 5 months through 360-degree Career Guidance, Globally Recognized Skill Certifications & Assured Job Opportunities.

Available in English & Tamil

*only for professionals and graduates

I’m Interested in this Program
Name*
Phone*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current Profile*
Year of passed out*
Please fill all the required fields!
Please accept terms and conditions to proceed

Duration

5 months (Weekend)

Format

Online Live Class learning Program

Hiring partners

600+ Companies

EMI Options

Upto 12 months

Placement

100% Job Placement Support

About GUVI’s Zen Class

About GUVI’s Zen Class

Indian Institute of  Technology, Madras

Zen Class offers the industry’s leading project-based professional courses with assured job opportunities to its learners upon completion of the course. Powered by GUVI(an IIT-M & IIM-A incubated EdTech company), the Zen class is exclusively curated by the founders(ex-PayPal employees). With World-class mentorship from industry experts, a vernacular approach in upskilling & more than 600 top companies like Google, Microsoft, and Flipkart, as hiring partners, Zen class gives a competitive advantage for its learners to land their dream job.

We are accredited by

We are accredited by

Indian Institute of Engineering and Technology, Madras

About our IIT-M Pravartak Certified AI & ML Program

IIT-M Research Park, Chennai

IIT-M Pravartak Certified AI & ML Program is an Advanced Career Program from GUVI's Zen Class. This Program will help you become an Artificial Intelligence & Machine Learning Expert in just 5 Months. The goal of this course is to help Students/working professionals upskill and equip themselves with the job skills required to build and deploy AI & ML models in production using Cloud

We are accredited by

IIT-M Research Park, Chennai

Why learn AI & ML in 2023?

By the end of 2023, AI is forecasted to create 2.3 Million jobs, with the highest demand for roles such as AI developers, machine learning engineers & data scientists. Also, according to studies done by the World Economic Forum(WEF), domains such as Artificial Intelligence, Machine Learning, and Data Analytics could create 133 Million new jobs globally. The average salary earned by a professional AI & ML Engineer is ₹11.3 Lakhs per Annum in India.

  • High Salary
  • High Job Demand
  • Wide Scope of AI & ML in India

Benefits of our program

Learn from IIT Professors & Industry Experts

LIVE classes + Lifetime recorded videos

A program designed by Subject-Matter Experts

Globally Recognized Certification from GUVI & IIT-M Pravartak

Hands-on Workshops & Hackathons

Technical Support Available in English and தமிழ் 

100% Job Placement Assistance

EMI options available

A digital portfolio through "Github"

7- Day Preboot Refund policy

Technical Support Available in English and தமிழ்

A digital portfolio through "Github"

100% Job Placement Assistance

EMI options available

7- Day Preboot Refund policy

Technologies covered in this program

Curriculum

Curriculum

In this program, we adopt a case study methodology to disseminate the latest Developments in Cloud Technologies, Deep Learning, NLP and Machine Learning Model Building and its Deployment with the fundamentals of Artificial Intelligence.

Live Classes with Mentor Support

Live Classes


Module-0: AI for everyone

This will be a part of the preboot session, where we will talk about basic AI
and how it is being used in industries. Moreover, we will shed some light on
the applications of Deep Learning.
1. What is AI?
2. The terminology of AI
3. The power of Machine Learning in the current era
4. The limitations of Machine Learning
5. A soft introduction to Deep Learning
6. Some cool applications of Deep Learning

Module-1: Introduction to Artificial Intelligence and current trends

We will formally introduce AI and the current industry practices. We will
discuss how to build and deploy state-of-the-art AI products.
1. Introduction to AI
2. Machine Learning basics
3. Workflow of a Machine Learning projects
4. Introduction to Deep Learning and difference between ML and DL.

5. Inducing AI using ML and DL
6. How to choose an AI project?

Module-2: Introduction to Python

We will go through the basics of python with all essential beginner friendly
concepts of python programming like datatypes, loops, data structures and
functions, followed by assessments and assignments
1. Python - Basic
2. Why python ?
3. Python IDE
4. Hello World Program
5. Variables & Names
6. String Basics
7. List
8. Tuple
9. Dictionaries
10. Conditional Statements
11. For and While Loop
12. Functions
13. Numbers and Math Functions
14. Common Errors in Python

Module-3: Introduction to Python (Advanced)

Since we have essential basics of python we will see some advanced
concepts like comprehensions, file handling, regular expressions, object
oriented programming, pickling and many more essential concepts.

1. Python - Advanced
2. Functions as Arguments
3. List Comprehension
4. File Handling

5. Debugging in Python
6. Class and Objects
7. Lambda, Filters and Map
8. Python PIP
9. Iterators
10. Pickling
11. Python JSON
12. Python API and web scraping

Module-4: Introduction to Pandas for Data Handling

Since we need to handle huge amounts of data, we will be implementing
data handling techniques with Pandas library.And we will explore the
different miscellaneous functions of Pandas library in detail.

1. Introduction to Pandas
2. Series Data Structure - Querying and Indexing
3. DataFrame Data Structure - Querying, Indexing, and loading
4. Merging data frames
5. Group by operation
6. Pivot table
7. Date/Time functionality
8. Example: Manipulating DataFrame

Module-5: Introduction to SQL

We will dive into the SQL-based databases. We will understand the
problems with file-based systems and how databases can overcome those
challenges. We will learn the basics of SQL queries, schemas, and
normalization.

1. Data Modeling
2. Normalization, and Star Schema
3. ACID transactions
4. Select, insert, update & delete (DML and DQL)
5. Join operations
6. Window functions (rank, dense rank, row number etc)
7. Data Types, Variables and Constants
8. Conditional Structures (IF, CASE, GOTO and NULL)
9. Integrating python with SQL

Module-6: Exploratory Data Analysis with Python

It is always needed to analyze the data and preprocess it , since the real
world data is not always industry ready, so in this week we will be dealing
with a lot of data cleaning and Exploratory data Analysis techniques which
is a very crucial stage for any data science project
1. Structured vs Unstructured Data
2. Common Data issues and how to clean them
3. Textual data cleaning
4. Meaningful data transformation (Scaling and Normalisation)
5. Handling missing data
6. Outlier detection and correction
7. Example: EDA on Movies DataSet

Module-7: Data Visualisation in Python (Matplotlib, Seaborn)

Data Visualization is used to understand data in visual context so that the
patterns , trends and correlations in the data can be understood. We will do
a lot of visualization with libraries like Seaborn, Matplotlib etc inturn that
leads to effective story telling.
1. Read Complex JSON files

2. Styling Tabulation
3. Distribution of Data - Histogram
4. Box Plot
5. Pie Chart
6. Donut Chart
7. Stacked Bar Plot
8. Relative Stacked Bar Plot
9. Stacked Area Plot
10. Scatter Plots
11. Bar Plot
12. Continuous vs Continuous Plot
13. Line Plot
14. Line Plot Covid Data

Module-8: Machine Learning Refresher

We will cover the basics of Machine Learning and connect the use cases in
the domain of Machine Learning with the Artificial Intelligence.
1. What is ML and how it is related to AI?
2. Predictive Modelling
3. Correlation
4. Basics of regression
5. Ordinary least squares
6. Simple linear regression
7. Model building
8. Model assessment and improvement
9. Diagnostics
10. Multiple linear regression (model building and assessment)
11. Random forest & decision tree

Module-9: Machine Learning Continued

We will cover more advanced concepts in ML.

1. Classification
2. Logistic regression
3. K nearest neighbours
4. Clustering
5. K means
6. Dimensionality reduction methods
7. Principal component analysis and its variants
8. Linear Discriminant Analysis
9. Support vector machine

Module-10: Introduction to Neural Networks

Given the fundamental understanding of basic regression algorithms, we
will now deep dive into the Neural Networks. We will learn the basic unit of
neural networks and will slowly learn to create a network.
1. A single neuron details
2. The XOR problem and introduction to multi-layer perceptron
3. Understanding the output & Activation Functions
4. Derivatives of Activation Functions
5. Gradient Descent for Neural Networks
6. Backpropagation Algorithm
7. Understanding Computational graph
8. Backpropagation using computational graph
9. Random initialization

Module-11: Deep Neural Networks

After having the basic understanding of neural networks, we will look into
deep neural networks and try to understand how to learn complex
functions.
1. Deep L-layer Neural Network
2. Forward Propagation in a Deep Network
3. Building Blocks of Deep Neural Networks

4. Forward and Backward Propagation
5. Parameters vs Hyperparameters
6. Parameters learning and hyperparameters tuning

Module-12: Applied Deep Learning with Pytorch

We will dive into the practical aspects of deep learning using PyTorch. We
will learn the basic terminologies and their significance. Moreover, we will
learn how to implement neural networks in PyTorch.
1. Understanding the learning aspect of neural networks
2. PyTorch basics
3. Tensor and Datasets in PyTorch
4. Linear Regression in PyTorch
5. Multiple Input Output Linear Regression
6. Softmax Rergresstion
7. Shallow Neural Networks
8. Splitting the data (train/test/dev)
9. Understanding Bias and Variance
10. Understanding overfitting
11. Using regularization
12. Regularization techniques (like dropout)

Module-13: Applied Deep Learning with Pytorch Continued

We will learn normalization and other related concepts. Moreover, we will
look into the problems like vanishing gradient
1. Implementing Deep Networks
2. Convolutional Neural Network (Convolution, Activation Functions and
Max Polling, Multiple Input and Output Channels, GPU in PyTorch)
3. Normalizing Inputs
4. Vanishing / Exploding Gradients
5. Weight Initialization for Deep Networks
6. Numerical Approximation of Gradients

7. Gradient Checking
8. Gradient Checking Implementation

Module-14: Introduction to Computer Vision with Convolution Neural Networks

We will introduce computer vision and will try to understand how deep
learning can help us perform various tasks.
1. What is CV? (understanding with examples)
2. Edge detection with examples
3. Padding
4. Strided Convolutions
5. Convolutions Over Volume
6. One Layer of a Convolutional Network
7. Simple Convolutional Network Example
8. Pooling Layers
9. CNN Example


Module-15: Natural Language Processing with Neural Networks

Given the idea about Computer Vision with Deep Neural Networks, now we
will understand another use case, which is NLP with deep learning.
1. Deep learning architectures for sequence processing
2. Recurrent neural networks
3. Managing context in RNNs and its drawbacks
4. Introduction to LSTMs and GRUs

Module-16: Natural Language Processing with Neural Networks continued

After having the basic understanding of deep learning architecture for
language models, we will now look into more complex architectures.

1. Self Attention Networks: Transformers
2. Introduction to Encoder-Decoder models
3. Encoder-Decoder with RNNs
4. Attention and Beam search
5. Encoder and Decoder with Transformers
6. Transfer Learning through Fine-Tuning

Module-17: Introduction to LLMs and prompt Engineering

Given the overall context of transformer models and transfer learning, now
we will discuss the architecture of Large Language Models and how to
write efficient prompts.
1. Introduction to Large Language Models
2. Description of GPT-3 and chatGPT architecture
3. Application of LLMs in various fields (Life sciences, Legal Languages,
etc.)
4. Basic description of other LLMs

Module-18: Prompt Engineering using OpenAI

We will now dive deeper into the prompt engineering and discuss the
effective ways of using OpenAI API.
1. Introduction to GPT 3.5 & 4 api's
2. Introduction & importance of Prompt Engineering
3. Prompting Guidelines
4. Outcomes of Prompt Engineering - Iterative learning, Summarizing,
Inferring & Expanding
5. Interactive ChatBot
6. Application to summarize & identify the sentiment of customer
feedback given to an e-commerce website

Final Projects

1. Image segmentation using DNNs
2. Gesture recognition using DNNs
3. Building NER for pharmaceutical dataset
4. Building and deploying Question Answering system with Hugging
Face
5. Face detection using Neural Style Transfer

Learn from IIT Professors & Industry Experts

Learn from IIT Professors & Industry Experts

Certification from IIT-M Pravartak & GUVI

Certification

  • Certificate will be issued after the successful completion of the course.
  • Certification from IIT-M Pravartak & GUVI
  • Globally recognized enough to outshine in Interviews.
  • Showcase your talent & skills on LinkedIn.

Where do our students work?

& more

Our Awards & Achievements

"Most Trusted Vernacular Edtech Brand" 

Awarded by ZEE Digital during ZEE National Achievers Awards 2022.

AI-for-India 1.0 -  Guinness World Record Holder

Broke the Record for most users taking an online computer programming lesson in 24 Hrs.

"Best Online Personalised Learning Programs" 

Awarded by ENTREPRENEUR INDIA for having the best online personalized learning programs

Join the Most Promising IIT-M Pravartak Certified Artificial Intelligence & Machine Learning

How will this program works?

How do you get guaranteed placement opportunities?

Enroll in the Zen class - Motion graphics course

Complete the online sessions of the course

Complete the projects assigned by Industry Experts

Attend mock interviews with our HR team & Core rounds with Industry Experts

Receive interview opportunities with top companies

Get guidance to crack the Interviews with lucrative packages

Step 1
Enroll
Fill out the form
Step 2
Career counselor
Talk with our Career counselor
Step 3
Pre-Bootcamp
Proceed to the Pre-bootcamp (Refundable)
Step 6
Placed
Get placed in Top Industry
Step 5
Complete
Complete the Program
Step 4
Mainbootcamp
Proceed to Mainbootcamp
Step 1
Enroll
Fill out the form
Step 2
Career counselor
Talk with our Career counselor
Step 3
Pre-bootcamp
Proceed to the Pre-bootcamp (Refundable)
Step 4
 Mainbootcamp
Proceed to Mainbootcamp
Step 5
Complete
Complete the Program
Step 6
Get Placed
Get placed in Top Industry

IIT-M Pravartak Certified Artificial Intelligence & Machine Learning Program fee

INR ₹1,30,999

 INR ₹89,999

(incl. taxes)

  • EMI options available
  • Book your seat for this program at just INR 8000 (refundable).
  • Join along with your friends & get special discounts

GUVI Learners Review

GUVI Learners Review

What our students say about ZEN CLASS?

“Guvi offers a cordial, supportive and friendly environment to learners. With excellent support and 24*7 assistance from the mentors guvi does not leave any stone unturned to improvise your learning. Thanks for being such an inspiration to us.”

Author
Gokak Mohd Ishtiyaque

“Hello folks, if you are thinking of a career transition then, “GUVI” is the best platform to get nourished, indulged and protruded in this upcoming field and also, it doesn’t matter from which engineering background you are or whether you are a working fellow. The best thing I found here is you will always get motivated unknowingly and become curious to learn more & more from the tutorial videos conducted by the IITM professors. GUVI helps me to think about the problem in multidimensional ways. Thanks to the GUVI team”

Author
Shubham Nehete

“They are very approachable and friendly when we ask any doubt or any clarification. Before joining guvi I have already done a course in another institution. When comparing these two institutions, there is a lot of difference in teaching.I love that the mentor who is teaching the course is not only a mentor but a professional too. This is a very unique thing about guvi. I will rate 5/5 to Guvi.”

Author
Vishally

“GUVI is one of the best platforms to start a new course and a new career. 
GUVI is one of the best Platform Where users are been trained with industry experts. It has its own software to practise and a huge number of exercises to master any topic.”

Author
Tejas Samanthapudi

“Guvi helps me to improve my self-confidence in coding skills . The zoom classes are totally comfortable,friendly and easy to learn .It helps me to understand the basic and the core concepts and it helped me to. Build logical skills.I got great mentor's which helped me to bridge between the academics. I'm very proud Thanks to Guvi”

Author
Gokila

“Guvi offers a cordial, supportive and friendly environment to learners. With excellent support and 24*7 assistance from the mentors guvi does not leave any stone unturned to improvise your learning. Thanks for being such an inspiration to us.”

Gokak Mohd Ishtiyaque

“Hello folks, if you are thinking of a career transition then, “GUVI” is the best platform to get nourished, indulged and protruded in this upcoming field and also, it doesn’t matter from which engineering background you are or whether you are a working fellow. The best thing I found here is you will always get motivated unknowingly and become curious to learn more & more from the tutorial videos conducted by the IITM professors. GUVI helps me to think in multidimensional ways. Thanks to the GUVI team”

Shubham Nehete

“They are very approachable and friendly when we ask any doubt or any clarification. Before joining guvi I have already done a course in another institution. When comparing these two institutions, there is a lot of difference in teaching.I love that the mentor who is teaching the course is not only a mentor but a professional too.  I will rate 5/5 to Guvi.I am thankful for all the people in Guvi for building up such a valuable program for our career.””

Vishally

“GUVI is one of the best platforms to start a new course and a new career. 
GUVI is one of the best Platform Where users are been trained with industry experts. It has its own software to practise and a huge number of exercises to master any topic.”

Tejas Samanthapudi

“GUVI is one of the best platforms to start a new course and a new career. 
GUVI is one of the best Platform Where users are been trained with industry experts. It has its own software to practise and a huge number of exercises to master any topic.”

Gokila

“I have attended several classes conducted by Guvi. It is really helpful to gain knowledge as it is different from other online courses. Here, we have mentors in live sessions, so we will be more concentrated than other online courses where we watch pre recorded videos. Also we are getting weekly tasks that would make us learn even if there is no class. I am thankful for all the people in Guvi for building up such a valuable program for our career.”

Gokul

“Guvi offers a cordial, supportive and friendly environment to learners. With excellent support and 24*7 assistance from the mentors guvi does not leave any stone unturned to improvise your learning. Thanks for being such an inspiration to us.”

Author
Gokak Mohd Ishtiyaque

“Hello folks, if you are thinking of a career transition then, “GUVI” is the best platform to get nourished, indulged and protruded in this upcoming field and also, it doesn’t matter from which engineering background you are or whether you are a working fellow. The best thing I found here is you will always get motivated unknowingly and become curious to learn more & more from the tutorial videos conducted by the IITM professors. GUVI helps me to think about the problem in multidimensional ways. Thanks to the GUVI team”

Author
Shubham Nehete

“They are very approachable and friendly when we ask any doubt or any clarification. Before joining guvi I have already done a course in another institution. When comparing these two institutions, there is a lot of difference in teaching.I love that the mentor who is teaching the course is not only a mentor but a professional too. This is a very unique thing about guvi. I will rate 5/5 to Guvi.”

Author
Vishally

“GUVI is one of the best platforms to start a new course and a new career. 
GUVI is one of the best Platform Where users are been trained with industry experts. It has its own software to practise and a huge number of exercises to master any topic.”

Author
Tejas Samanthapudi

“Guvi helps me to improve my self-confidence in coding skills . The zoom classes are totally comfortable,friendly and easy to learn .It helps me to understand the basic and the core concepts and it helped me to. Build logical skills.I got great mentor's which helped me to bridge between the academics. I'm very proud Thanks to Guvi”

Author
Gokila

Projects

Custom Gmail client using Gmail API

Bored of your Gmail client , then build your own frontend for GMail by accessing it through GmailAPI. This will teach you how to design & integrate the API and do OAuth

Instagram in React

Clone of your Insta account with react components. create Business Profile, Celebrity Profile, General Profile, Add & Follow Friends & Celebrities, Browse posts of different categories, Upload Post, Upload Stories, Go live, Keep up with social trends.

Music streaming app like Spotify

Publish a web app like Spotify using modern Framework React and learn how to create components and build a large scale project and host it live.

YouTube radio

Everyone wants a personalized presentation. Customized player for your preferences and you can store the data in a MongoDB via a backend like NodeJS.

Google Docs Clone

Build Realtime Document editor for users for editing, creating and sharing with all the features like Google Docs using Socket.io.

More about our Mentors

Benefits of Zen Class

Prof. Shankar Narasimhan

Prof. Shankar Narasimhan is currently a professor in the department of chemical engineering at IIT Madras. His major research interests are in the areas of Data mining, Process Design and Optimization, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control. He has co-authored several important papers and a book which has received critical appreciation in India and abroad. Together with Prof. Raghunathan Rengasamy, he has a course on DataScience for Engineers in NPTEL, for which more than sixty thousand students have enrolled in five
offerings.

Mr. Suresh Ramadurai

Mr. Suresh’s expertise is in the area of data sciences. In a career spanning over twenty-five years, he has helped organizations develop profitable brands and businesses using research and
analytics. He has worked in the areas of advertising, market research and analytics with JWT, TNS India, and IBM Daksh. Currently he is involved in teaching market research as a visiting faculty at various IIM’s. He is also involved in training analytics professionals.

Prof. Babji Srinivasan

Prof. Babji Srinivasan received his B.Tech degree in instrumentation and control engineering from Madras Institute of Technology, Chennai, India. In 2008, he received the Master's degree in
chemical engineering from the Indian Institute of Technology Madras, Chennai, India. He then started his doctoral work at the department of chemical engineering at Texas Tech University, Lubbock, TX, USA and received his doctorate in 2011. In 2012, he joined the Indian Institute of Technology Gandhinagar, India as an Assistant Professor at the departments of chemical and electrical engineering.

Dr. Srinivas Soumitri Miriyala

Dr. Srinivas Soumitri Miriyala completed his Master's and Ph.D. at IIT Hyderabad in 2020. His thesis focussed on developing an Evolutionary Neural Architecture Search (NAS) strategy for optimally designing Deep Neural Networks facilitating contemporary research in Automated Machine Learning (AutoML). He successfully implemented his algorithm on 7 real-world industrial case studies and more than 25 state-of-the-art benchmarks.

Dr. Jayadev

Jayadev did his master’s and PhD from IIT Madras, and recently submitted his thesis titled “Data-Driven Identification, Completion and Verification of Topology in Conserved Networks”. The thesis proves results and proposes methodologies by combining techniques from machine learning, graph theory and control theory. During his PhD, Jayadev was affiliated with the Robert Bosch Center for Data Science & AI, and Systems & Control group at IIT
Madras.

Dr Santhosh Kumar Varanasi

Dr. Santhosh Kumar Varanasi, completed his M.Tech (2015) and Ph.D. (September, 2019) in the Department of Chemical Engineering at Indian Institute of Technology Hyderabad, India. From
September 2019 till March 2022, he worked as a Postdoctoral fellow in the Department of Chemical and Materials Engineering, University of Alberta, Canada. Currently, he is working as a Senior Data Scientist, L2 at Gyandata Pvt. Ltd.

Mr. Navin Kumar

Navin Kumar, the Training Team Lead at GITAA Pvt.Ltd., has led many successful data science training programs for several national and multinational level corporates and other educational
institutions. With a Master’s in Statistics, he has wholeheartedly dedicated his interests to the field of Data Science by gaining and imparting knowledge in several areas such as Python, R,
Machine Learning, NLP and Time Series.

Mr. Aparajit Balaji

Aparajit Balaji has completed his B.Tech. in Mechatronics. In his current capacity as a Junior Data Scientist, he has successfully led various Machine Learning, Big Data, and Deep Learning programmes for various students and public and private sector professionals. He also works on
material and case study development for programmes using Python and R as programming languages, and Tableau as a Business Intelligence tool.

Ms. Prathibha Pillai

Prathibha, currently the Account Lead (SGRI) at GITAA Pvt.Ltd., comes with multiple years of experience in the field of Information Management as a Data Consultant for major MNCs like
Deloitte. Aside from conducting training sessions, her other responsibilities include data science consulting and handling major customer accounts of GITAA.

Dr. Sanatan Sukhija

Dr. Sanatan Sukhija is currently working as an Assistant Professor in the Department of Computer Science and Engineering at Mahindra University, Hyderabad. He earned his Doctorate from the Department of Computer Science and Engineering at Indian Institute of Technology Ropar in January 2020.

Dr. Shyam Kumar

Have worked with Tiger Analytics and Cognizant Technology Solutions in their Data Science team. Have 2 Patents on the application of AI and Machine Learning for Fraud Detection in Block chain and Shrinkage Reduction in Retail.

Amit Kumar Verma

My research interests lie in the area of Natural Naguage Processing, Deep Learning, Collective Intelligence, and Open Source Software development. I have mostly worked on core NLP problems using large-scale datasets (like Wikipedia) and designed methods to understand the crowd behavior on collaborative portals. I am also interested in developing python-based libraries for research…

Vinish Vivek

Highly trained Automobile Engineering focused on delivering comprehensive academic instructions on Engineering Product Design and Simulation, Mechanical Project Management, Design & Simulation software; building courses on Solidworks and Python Programming for e-learning websites, simulating, evaluating & optimizing
product design, & delivering large-scale engineering projects

Bala Chandar

Balachandar K, a graduate engineer in Information technology from Anna University of Chennai. He has 12+ years of IT industry experience, 10+ years of corporate technical trainer and one of the Data science SME and currently he is working as Data scientist and Product principal architect for one of the US based client and he has built end to
end Artificial intelligence and Machine learning product.

Amit Kumar Verma

My research interests lie in the area of Natural Naguage Processing, Deep Learning, Collective Intelligence, and Open Source Software development. I have mostly worked on core NLP problems using large-scale datasets (like Wikipedia) and designed methods to understand the crowd behavior on collaborative portals. I am also interested in developing python-based libraries for research…

Frequently asked questions

What's the difference between ZEN Class's IIT-M Pravartak Certified Artificial Intelligence & Machine Learning Program and other programs available online?

ZEN IIT-M Pravartak certified Artificial Intelligence & Machine Learning program follows a structured vetted curriculum, co-curated & continually refined by subject matter experts of IIT-M & industry experts. This program will help you master the high-end AI & ML skills with the comfort of learning in English & தமிழ்.


At ZEN Class, we create the Job-ready skills that empower achievement, probably that's why unlike other programs available online, the ZEN class provides Assured Job Placement support. The real-world capstone projects in the Artificial Intelligence & Machine Learning Program go far beyond step-by-step guides, cultivating the critical thinking required for workplace relevance.

What is the duration of the program?

The 5-months online classes are scheduled for weekends (Saturday & Sunday) so that you attain crucial AI/ML skills without hampering your ongoing work or study.

Who is eligible for this IIT-M Pravartak certified Artificial Intelligence & Machine Learning Program?
  • Students pursuing degrees in computer science, engineering, mathematics, statistics, or related fields can upgrade their skill set with AI & ML
  • Working professionals from different industries who wish to transition careers into AI and ML-related roles
  • Anyone with a keen interest in upgrading their future with AI & ML skills
What are the payment options available to enroll in this Program?

We have different Payment Options Like EMI, Credit card, Debit card & Wallet. EMI options available from 3 to 12 Months. For more details, reach us at +91-9736097320
 

What kind of Project will I work on and how will it help me?

The Program features three real-world capstone projects:

  • Image segmentation using DNNs
    Gesture recognition using DNNs
  • Building NER for pharmaceutical dataset
  • Building and deploying Question Answering system with Hugging Face
  • Face detection using Neural Style Transfer

Each project you work on will give you a hands-on learning experience & part of your portfolio will demonstrate your newly acquired skills with latest AI techniques, data analysis, feature engineering, ML & DL algorithms. By the end of the program, you will be proficient enough to train and evaluate predictive models using the cloud. 

What will be tested to clear the screening test before joining the Program?

The program has certain prerequisites such as intermediate python programming proficiency and a basic understanding of probability and statistics.

The screening is to distill the talents & make sure you are ready for the advanced concepts of Artificial Intelligence, & Machine Learning. Once you have cleared your pre-boot camp assessment, you're good to go for the main bootcamp. 

What if I miss any live classes? How long do I have access to the learning contents and practice platforms?

Zen Class provides you with a recording of every class with unlimited access to all the practice platforms. So, you barely get a chance to miss out on anything. You can just go back & revise them at your own time. 

Will I be Certified?

Yes, upon completion of the program, you will be accredited with Skill Certifications from IIT-M Pravartak & GUVI.

Still have queries? Contact Us

Still have queries?
Contact us

Request a Callback. An expert from the admissions office will call you in the next 24 working hours. You can also reach out to us at [email protected] or +91-9736097320

Download Syllabus

Name*
Phone*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current Profile*
Year of passed out*
Please fill all the required fields!
Please accept terms and conditions to proceed

Request a Call back now

Name*
Phone*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current Profile*
Year of passed out*
Please fill all the required fields!
Please accept terms and conditions to proceed

Book your seat now

Name*
Phone*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Educational Qualification*
Current Profile*
Year of passed out*
Please fill all the required fields!
Please accept terms and conditions to proceed

Check your eligibility now

Name*
Phone*
  • Andorra(+376)
  • United Arab Emirates(+971)
  • Afghanistan(+93)
  • Antigua & Barbuda(+1 268)
  • Anguilla(+1 264)
  • Albania(+355)
  • Armenia(+374)
  • Angola(+244)
  • Antarctica(+8)
  • Argentina(+54)
  • Samoa (American)(+1 684)
  • Austria(+43)
  • Australia(+61)
  • Aruba(+297)
  • Åland Islands(+358 18)
  • Azerbaijan(+994)
  • Bosnia & Herzegovina(+387)
  • Barbados(+1 246)
  • Bangladesh(+880)
  • Belgium(+32)
  • Burkina Faso(+226)
  • Bulgaria(+359)
  • Bahrain(+973)
  • Burundi(+257)
  • Benin(+229)
  • St Barthelemy(+590)
  • Bermuda(+1 441)
  • Brunei(+673)
  • Bolivia(+591)
  • Caribbean NL(+599)
  • Brazil(+55)
  • Bahamas(+1 242)
  • Bhutan(+975)
  • Botswana(+267)
  • Belarus(+375)
  • Belize(+501)
  • Canada(+1)
  • Cocos (Keeling) Islands(+61)
  • Congo (Dem. Rep.)(+243)
  • Central African Rep.(+236)
  • Congo (Rep.)(+242)
  • Switzerland(+41)
  • Côte d'Ivoire(+225)
  • Cook Islands(+682)
  • Chile(+56)
  • Cameroon(+237)
  • China(+86)
  • Colombia(+57)
  • Costa Rica(+506)
  • Cuba(+53)
  • Cape Verde(+238)
  • Curaçao(+599)
  • Christmas Island(+61)
  • Cyprus(+357)
  • Czech Republic(+420)
  • Germany(+49)
  • Djibouti(+253)
  • Denmark(+45)
  • Dominica(+1 767)
  • Dominican Republic(+1 809)
  • Algeria(+213)
  • Ecuador(+593)
  • Estonia(+372)
  • Egypt(+20)
  • Western Sahara(+212)
  • Eritrea(+291)
  • Spain(+34)
  • Ethiopia(+251)
  • Finland(+358)
  • Fiji(+679)
  • Falkland Islands(+500)
  • Micronesia(+691)
  • Faroe Islands(+298)
  • France(+33)
  • Gabon(+241)
  • Britain (UK)(+44)
  • Grenada(+1 473)
  • Georgia(+995)
  • French Guiana(+594)
  • Guernsey(+44 1481)
  • Ghana(+233)
  • Gibraltar(+350)
  • Greenland(+299)
  • Gambia(+220)
  • Guinea(+224)
  • Guadeloupe(+590)
  • Equatorial Guinea(+240)
  • Greece(+30)
  • South Georgia & the South Sandwich Islands(+99)
  • Guatemala(+502)
  • Guam(+1 671)
  • Guinea-Bissau(+245)
  • Guyana(+592)
  • Hong Kong(+852)
  • Honduras(+504)
  • Croatia(+385)
  • Haiti(+509)
  • Hungary(+36)
  • Indonesia(+62)
  • Ireland(+353)
  • Israel(+972)
  • Isle of Man(+44 1624)
  • India(+91)
  • British Indian Ocean Territory(+246)
  • Iraq(+964)
  • Iran(+98)
  • Iceland(+354)
  • Italy(+39)
  • Jersey(+44 1534)
  • Jamaica(+1 876)
  • Jordan(+962)
  • Japan(+81)
  • Kenya(+254)
  • Kyrgyzstan(+996)
  • Cambodia(+855)
  • Kiribati(+686)
  • Comoros(+269)
  • St Kitts & Nevis(+1 869)
  • Korea (North)(+850)
  • Korea (South)(+82)
  • Kuwait(+965)
  • Cayman Islands(+1 345)
  • Kazakhstan(+7)
  • Laos(+856)
  • Lebanon(+961)
  • St Lucia(+1 758)
  • Liechtenstein(+423)
  • Sri Lanka(+94)
  • Liberia(+231)
  • Lesotho(+266)
  • Lithuania(+370)
  • Luxembourg(+352)
  • Latvia(+371)
  • Libya(+218)
  • Morocco(+212)
  • Monaco(+377)
  • Moldova(+373)
  • Montenegro(+382)
  • St Martin (French)(+590)
  • Madagascar(+261)
  • Marshall Islands(+692)
  • North Macedonia(+389)
  • Mali(+223)
  • Myanmar (Burma)(+95)
  • Mongolia(+976)
  • Macau(+853)
  • Northern Mariana Islands(+ 1 670)
  • Martinique(+596)
  • Mauritania(+222)
  • Montserrat(+1 664)
  • Malta(+356)
  • Mauritius(+230)
  • Maldives(+960)
  • Malawi(+265)
  • Mexico(+52)
  • Malaysia(+60)
  • Mozambique(+258)
  • Namibia(+264)
  • New Caledonia(+687)
  • Niger(+227)
  • Norfolk Island(+672)
  • Nigeria(+234)
  • Nicaragua(+505)
  • Netherlands(+31)
  • Norway(+47)
  • Nepal(+977)
  • Nauru(+674)
  • Niue(+683)
  • New Zealand(+64)
  • Oman(+968)
  • Panama(+507)
  • Peru(+51)
  • French Polynesia(+689)
  • Papua New Guinea(+675)
  • Philippines(+63)
  • Pakistan(+92)
  • Poland(+48)
  • St Pierre & Miquelon(+508)
  • Pitcairn(+870)
  • Puerto Rico(+1 787)
  • Palestine(+970)
  • Portugal(+351)
  • Palau(+680)
  • Paraguay(+595)
  • Qatar(+974)
  • Réunion(+262)
  • Romania(+40)
  • Serbia(+381)
  • Russia(+7)
  • Rwanda(+250)
  • Saudi Arabia(+966)
  • Solomon Islands(+677)
  • Seychelles(+248)
  • Sudan(+249)
  • Sweden(+46)
  • Singapore(+65)
  • St Helena(+290)
  • Slovenia(+386)
  • Svalbard & Jan Mayen(+47)
  • Slovakia(+421)
  • Sierra Leone(+232)
  • San Marino(+378)
  • Senegal(+221)
  • Somalia(+252)
  • Suriname(+597)
  • South Sudan(+211)
  • Sao Tome & Principe(+239)
  • El Salvador(+503)
  • St Maarten (Dutch)(+599)
  • Syria(+963)
  • Eswatini (Swaziland)(+268)
  • Turks & Caicos Is(+1 649)
  • Chad(+235)
  • French Southern Territories(+99)
  • Togo(+228)
  • Thailand(+66)
  • Tajikistan(+992)
  • Tokelau(+690)
  • East Timor(+670)
  • Turkmenistan(+993)
  • Tunisia(+216)
  • Tonga(+676)
  • Turkey(+90)
  • Trinidad & Tobago(+1 868)
  • Tuvalu(+688)
  • Taiwan(+886)
  • Tanzania(+255)
  • Ukraine(+380)
  • Uganda(+256)
  • US minor outlying islands(+1)
  • United States(+1)
  • Uruguay(+598)
  • Uzbekistan(+998)
  • Vatican City(+379)
  • St Vincent(+1 784)
  • Venezuela(+58)
  • Virgin Islands (UK)(+1 284)
  • Virgin Islands (US)(+1 340)
  • Vietnam(+84)
  • Vanuatu(+678)
  • Wallis & Futuna(+681)
  • Samoa (western)(+685)
  • Yemen(+967)
  • Mayotte(+262)
  • South Africa(+27)
  • Zambia(+260)
  • Zimbabwe(+263)
Education Qualification*
Current Profile*
Year of passed out*
Please fill all the required fields!
Please accept terms and conditions to proceed
Please wait